Апатитские ученые улучшили характеристики сверхточного гироскопа

Апатитские ученые улучшили характеристики сверхточного гироскопа

0 12

Ученые разработали технологию создания сверхпроводящего покрытия для ротора сверхточного гироскопа.

Например, в гироскопе с воздушной опорой шариковые подшипники заменяет «газовая подушка», что позволяет устранить трение и износ материала опоры. Микромеханический гироскоп имеет относительно невысокую по сравнению с другими новыми типами точность, но за счет низкой стоимости и использования хорошо отработанных современных технологий массово используется в большинстве современных приборов и гаджетов и даже в игрушках.

К устройствам сверхвысокой точности относятся неконтактные гироскопы, реализующие состояние левитации. Ротор в них «парит» в силовом поле подвеса без контакта с окружающими телами. Один из самых перспективных с точки зрения точности – криогенный гироскоп. Сверхпроводящая сфера подвешена в магнитном поле, а рабочий объем охлаждается до сверхнизких температур. Криогироскопы относятся к сложнейшим приборам, изготовление которых находится на стыке науки и технологии.

На прошедших в 2021 году международных конференциях «Пленки и покрытия-2021» (Санкт-Петербург) и «Быстрозакаленные материалы и покрытия» (Москва) ученые Института химии и технологии редких элементов и минерального сырья Кольского научного центра РАН рассказали о своем многолетнем труде: разработке технологии и оборудования для создания сверхпроводящего ниобиевого покрытия на роторе криогироскопа.

На московской конференции доклад по этой разработке получил диплом I степени в номинации «Оригинальность исследования». Статья, написанная по материалам доклада, представлена в Санкт-Петербурге, опубликована в журнале Journal of Physics: Conference Series (издательство Institute of Physics Publishing (IOP), Великобритания).

Для того, чтобы изготовить ротор криогенного гироскопа, необходимо покрыть сверхпроводящим слоем ниобия подложку, отполировать получившееся покрытие и сформировать на нем защитную пленку для предотвращения деградации сверхпроводящих свойств ниобия. Исследователи предложили проводить каждый из этих этапов с использованием электрохимических процессов: электроосаждения, электрополировки, а также электроокисления ниобиевого покрытия.В качестве подложки ротора использовали новый современный материал – углеситалл.

Он имеет низкую плотность, высокую коррозионную стойкость и является хорошим проводником тока. Перед электроосаждением сверхпроводящего покрытия на сферической подложке вдоль ее экватора делали кольцевой вырез, необходимый для обеспечения устойчивого вращения ротора вокруг оси. Для создания сверхпроводящего ниобиевого покрытия на роторе криогироскопа использовался вращающийся катод.

Поскольку после электролитического осаждения ниобиевого покрытия его шероховатость соответствует 9-10 классу чистоты обработки поверхности, требуется дополнительная двухступенчатая обработка, включающая процессы электрохимической и механической полировки. Поверхность металла сглаживалась до зеркального блеска путем анодного растворения в растворе электролита.

Толщина исходного ниобиевого покрытия на сфере диаметром 10 мм составляла 127 мкм. После электрополировки поверхность покрытия обрабатывалась алмазными пастами с размером частиц от 1 до 0,3 мкм для достижения 13 класса чистоты поверхности. Финальная стадия обработки ротора – это образование пентаоксида ниобия на поверхности покрытия методом анодного оксидирования.

Все процессы создания ротора криогенного гироскопа по предложенной учеными технологии проходят при использовании минимального набора реактивов и в узком диапазоне условий, что позволяет экономить время, средства и исключать возможные ошибки при смене среды и условий. На разработанную технологию в 2019 году ученые получили патент, но ее усовершенствование продолжается.

Источник

НЕТ КОММЕНТАРИЕВ

Оставить комментарий